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Mutual information in a dilute, asymmetric neural network model
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Neural networks with asymmetric synaptic connections (wi j Þwji ) display a broad range of dynamical
behavior including fixed point, periodic, and ‘‘chaotic’’ trajectories. Previous work has shown that such
networks undergo an order-chaos phase transition as various network parameters, such as the connectivity or
the degree of asymmetry, are changed. Here, using an information theoretic approach, we present results which
suggest that neurons are able to communicate information to each other most effectively in networks that are
near the order-chaos transition. We then extend the model to incorporate some biologically relevant features.
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I. INTRODUCTION

Much progress has been made in understanding emer
computation in model neural networks. Networks of bina
neurons provide a general framework for simulating cog
tive processes such as pattern recognition, associa
memory, and learning@1#. Neurobiologists have made su
cessful models of small functional networks of known ne
roanatomy~e.g., oscillating networks that control rhythm
activities such as digestion@2# and simple locomotion@3#!,
but the principles of generalized computation remain an o
question. In this paper, we study the computational prop
ties of a neural network consisting of binary neurons w
dilute asymmetric synaptic connections. This simple mo
allows us to simulate large networks which can reflect m
of the architecture and dynamics of real neural networks

Our main goal is to determine the dynamical behavior t
maximizes the network’s ability to perform computation
To this end, we apply information theory, measuring the
erage mutual information between pairs of pre- and posts
aptic neurons. In order for a network to perform a collect
computation, information must be communicated across s
aptic connections. Previous workers have demonstrated
neural networks with asymmetric connections undergo
transition from ordered to chaotic behavior as certain n
work parameters, such as the connectivity, are changed.
find that the average mutual information has a peak near
order-chaos transition. This implies that the network c
most efficiently communicate information between cells in
narrow range of connectivities. We derive analytical pred
tions of the network activity as well as the location of t
phase transition. The mutual information peak becomes
creasingly pronounced when the basic model is extende
incorporate more biologically realistic features, such a
variable threshold and nonlinear summation of inputs.
general, the peak in the mutual information near the ph
transition is a robust feature of the system for a wide rang
assumptions about postsynaptic integration.

The network consists ofN binary neurons, each receivin
input fromK other randomly chosen neurons. TheK synaptic
inputs are a mixture of excitatory and inhibitory synap
1063-651X/2001/63~4!/041905~10!/$20.00 63 0419
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connections. The state of each neuron is represented by
variables iP$0,1%, wherei 51, . . . ,N. Thes50 state rep-
resents a neuron that is at rest~off! and thes51 state rep-
resents a neuron that is firing at its maximum rate~on!. At
each time step, all the neurons in the network are update
parallel according to the rule

s i~ t11!5QF(
j

wi j s j~ t !2Ti G , ~1!

wherewi j is the strength of the synaptic input from cellj to
cell i, Ti is the threshold of celli, andQ is the Heaviside step
function. If there is a synaptic connection from cellj to cell
i, then the weightwi j is a random variables chosen from
distributionr(wi j ); otherwise, it is zero. Different distribu
tions of synaptic strengths,r(wi j ), can be chosen to reflec
different neuronal architectures. Since a physiologically
alistic distribution would likely be multimodal, comprised o
separate subpopulations of excitatory and inhibitory syna
weights, an appropriate simplification is a relatively unifor
distribution. Similarly theTi can be chosen to represent th
known physiology of spike initiation~see Sec. II C 2!.

The order-chaos phase transition has been studied in
dom Boolean networks~RBNs! by Kauffman @4–6# and in
dilute asymmetric neural networks by Kurten@7#. Kurten’s
model uses (21,1) neurons and zero threshold. We must u
~0,1! neurons in order to investigate the effects of nonz
neuronal thresholds and for the update function to co
spond to realistic postsynaptic integration. Appendix A e
plains why these two representations are not gener
equivalent. We show that making this change of variables
the update rule, Eq.~1!, generates an extra thresholdlike ter
that is different for each neuron and significantly alters
network dynamics. In particular, the distribution of activi
levels is different, strongly affecting the computed inform
tion and mutual information discussed in Sec. II C.

Other recurrent asymmetric neural network models t
have been studied include a fully connected network wh
the synaptic weights consist of a symmetric part and an
tisymmetric part:wi j 5wi j

S1lwi j
A . This system exhibits a

phase transition asl is varied@8#. Crisantiet al. examined
©2001 The American Physical Society05-1
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the behavior of entropic quantities at this transition@9# and in
a globally coupled logistic map@10#. Another model derives
its asymmetry from the fact that a certain fraction of t
connections of a symmetric network are cut@11#. For a fully
connected network of neurons with a continuous range
firing rates, Sompolinskyet al. showed a transition to chao
as the degree of nonlinearity of the update function was
creased@12#. We chose completely asymmetric synap
weights and dilute connections to more closely model typ
biological networks.

The Hopfield neural network@13,14#, which is the proto-
typical model of associative memory, employs the simpli
ing assumption of symmetric synaptic weights,wi j 5wji .
Though biologically unrealistic, this assumption allows
Lyapunov function to be defined:

E52
1

2 (
i j

wi j s is j . ~2!

Accordingly, the system relaxes from its initial state into t
closest energy minimum, which is identified as a memo
Networks with asymmetric connections have no Lyapun
function, and thus can have limit cycles in addition to fix
points. Large asymmetric systems can manifest seemi
aperiodic behavior resembling deterministic chaos.

Kauffman showed that a random network of Boolean
tomata undergoes a transition from ordered to chaotic be
ior as a function ofK, the number of inputs to each ce
@4–6#. ForK<2, the network is in the ‘‘frozen’’ phase, with
most of the elements fixed in one state or the other and o
small, isolated pockets of activity. ForK.2, the active re-
gions percolate throughout the network, and the networ
said to be in the ‘‘chaotic’’ phase. Later workers showed t
this transition carries over to dilute asymmetric neural n
works @11,15,16# at similar values ofK, depending on mode
assumptions. This range of critical connectivities is
smaller than would be expected for a real neural netwo
The low values ofK are not intrinsic to this type of neura
network, but result from subsidiary assumptions such as
zero threshold criterion. The transition in our neural netwo
model also occurs atK52 for zero threshold, but it increase
significantly for more realistic threshold values.

The ‘‘chaotic’’ behavior referred to above is not chaos
the sense of a positive Lyapunov exponent. A Lyapunov
ponent cannot be defined for a two-state element. Since
dynamics are deterministic and the state space is finiteN

possible network states!, all trajectories must be periodic
However, the sensitivity of a trajectory to a small perturb
tion can be generalized by looking at the spread of ‘‘da
age’’ between two nearby states.

The damage can be defined as the normalized Hamm
distance between two network states,sW (t) andsW 8(t),

D~ t ![
1

N (
i

us i8~ t !2s i~ t !u. ~3!

If the configurations are initially very close, so thatD(0)
!1, then in the ordered phaseD(t) will tend to decay to
zero, whereas in the chaotic phaseD(t) will tend to grow
04190
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larger and remain finite@11#. Derrida and Pomeau succes
fully modeled this feature with their ‘‘annealed approxim
tion’’ @17#. Earlier it was shown@4# that the average period
grows exponentially with the system sizeN in the chaotic
phase, and it is either constant or increases as a power ofN in
the ordered phase. Both findings correspond to the expla
tion of the phase transition as resulting from the percolat
of active regions.

How does the ability of the network to perform comput
tions depend on its dynamics? Computational ability can
measured directly by training the network to perform a p
ticular task and rating its success. However, one drawbac
this approach is that the results would likely depend upon
task that is chosen and the learning algorithm that is e
ployed. It can also be difficult to compare such results w
experimental data.

Computational ability can also be measured indirectly
looking at quantities that are believed to be necessary fo
indicative of computation, such as information transfer, st
age, and processing@18#. The indirect method requires n
specification of what type of computation is being perform
and therefore relates more closely to our level of understa
ing of how higher level computation is performed in th
brain. For these reasons, we take the indirect approach in
work, and the quantity we examine is the average amoun
information communicated between cells, as measured
the mutual information.

In the language of computational theory, the direct m
surement quantifies ‘‘useful computation’’ and the indire
measurement ‘‘intrinsic computation.’’ Intrinsic computatio
places an upper bound on useful computation@19#. In the
present context, the fact that a high level of information
being communicated between cells does not imply that
network is performing a complex computation. However, t
converse is true—computation does require the commun
tion of information.

Several workers have studied the relation between c
putation and order-chaos transitions in a variety of syste
Wolfram found that the behavior of rule-based cellular a
tomata could be classified as steady state, periodic, cha
or ‘‘complex.’’ Cellular automata with complex dynamic
exhibit behavior that is intermediate between periodic a
chaotic. Wolfram hypothesized that this class of autom
may be capable of universal computation@20,21#. Crutch-
field quantified the behavioral complexity of continuous d
namical systems using his ‘‘statistical complexity’’ measu
which is the size of the minimal binary automata netwo
needed to reproduce the system’s dynamics@22#. He found
that as a system moves from ordered to chaotic behavior
example, the period doubling route to chaos of the logis
map, its statistical complexity peaks at the transition po
Similar ideas about phase transitions and computation h
been applied to the study of biological systems, including
colonies@23# and the immune system@24,25#. Recently, Pac-
zuski et al. have demonstrated that a network of compet
Boolean automata evolves by an evolutionary process to
border of order and chaos@26#.
5-2
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II. RESULTS

A. Average activity

The most general feature of the network’s dynamics is
average fraction of neurons that are in thes51 state~or,
equivalently, the average likelihood that any one neuron i
this state!. Unlike the RBN, where there is complete symm
try between the 0 and 1 states, here there is a bias towar
0 state~even with zero threshold! since a neuron with all of
its inputs off will also be off. The average probability that
neuron is on at timet11, p(t11), can be written in terms
of p(t), the average probability that its inputs were on
time t. We show in Appendix B that the average activi
follows the equation

p~ t11!5
12@12p~ t !#K

2
. ~4!

The steady state average activityp is the fixed point of Eq.
~4!. The solutions to Eq.~4! for differentK values are shown
in Fig. 1. The agreement with simulation data is nearly ex
and becomes increasingly good asN increases. These dat
correspond well to Flyvbjerg’s idea of the ‘‘stable core
@27#. The stable core refers to the fraction of frozen eleme
which is 1 in the ordered regime and less than 1 in the c
otic regime in the limitN→`. Here, in the ordered regime
the frozen elements are all in thes50 state. Flyvbjerg
points out that this quantity plays the role of an order para
eter for the transition in RBNs.

B. The phase transition

1. Average period

The location of the phase transition is determined by t
methods. We examine the behavior of the average perio
a function ofN, and we also calculate the evolution of th
distance between nearby trajectories using the annealed
proximation. Figure 2 shows the dependence of the ave
period on the number of neurons forK51, 2, and 6. In the
ordered phase the average period is either constant o

FIG. 1. Average activity as a function ofK: 3, solution to Eq.
~4!; •, simulation data forN580 ~average of 103 networks!; s,
simulation data forN510 000~average of 250 networks!.
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creases as a power ofN (^T&;Nx), reflecting the distribu-
tion of cycle lengths in the isolated active regions. In t
chaotic phase it increases exponentially inN (^T&;ea(K)N)
@6#. The average denoted by^•••& is the average over trials
where each trial has a different set of synaptic weights
initial conditions. This shows that as the active regions p
colate, the network can wander through a macroscopic f
tion of its state space. For a completely random system~the-
‘‘random map’’!, the dependence of the average period
system size can be solved exactly and is found to be^T&
5Ap/8 2N/2 @28#.

2. Annealed approximation

Although analytic solutions exist for the dynamics of th
RBN for the special cases ofK51 @29# and K5N @28#,
approximations must be made for all intermediate values
K. Derrida and Pomeau’s ‘‘annealed approximation’’@17#
allows an equation to be written for the time evolution of t
distance between two network configurations. This appro
mation effectively ignores correlations that build up betwe
the state of a neuron and the synaptic weights and state
its inputs by averaging over them at each time step. T
showed that the annealed approximation closely matc
simulation data for a network with ‘‘quenched’’ disorde

FIG. 2. Average period̂T& in units of time steps, as a functio
of system sizeN: ~a! s, K51 and •,K52 and~b! •, K56 ~simu-
lation data, average of 105 networks!. Solid line indicates power
law fit in ~a! and exponential fit in~b!.
5-3
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The equation is a little more complicated for the case of~0,1!
neurons than for Boolean elements or (21,1) elements since
pÞ 1

2 for all K. Adapting the derivation from@15# we arrive
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04190
at Eq.~5!, which predicts the average distance between t
configurations at timet11 as a function of this distance a
time t,
^D~ t11!&5 (
n51

K

D~ t !n@12D~ t !#K2nS K

n D (
a50

K2n

pa~12p!K2n2aS K2n

a D
3 (

b50

n S 1

2D nS n

b D E dx1r~x1!•••dxar~xa!E dy1r~y1!•••dybr~yb!

3E dz1r~z1!•••dzn2br~zn2b!UQS (
i 51

a

xi1(
i 51

b

yi D 2QS (
i 51

a

xi1 (
i 51

n2b

zi DU. ~5!
av-
tion.
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We use solutions to Eq.~4! to find the value ofp to be used
in Eq. ~5!. Equation~5! is the same for an annealed and
quenched network for one time step for two initial uncor
lated network states. Iterating the equation further in time
the annealed approximation.

The chaotic phase is defined by an increase inD(t) for
initially close configurations,

dD~ t11!

dD~ t ! U
D(t)50

.1. ~6!

We choose a uniform distribution forr(wi j ) for mathemati-
cal convenience and because a physiologically realistic
tribution would be a complicated multimodal distributio
comprised of separate distributions of weights for excitat
and inhibitory synapses. We find empirically that the resu
do not vary significantly for different distributions. For
uniform distribution forr(wi j ), the derivative in Eq.~6! can
be expressed as

dD~ t11!

dD~ t ! U
D(t)50

5
K

2
~12p!K211K

3 (
l 51

K21

pl~12p!K212 l S K21

l D 1

2l~ l 11!

3 (
n50

nmax

~21!n
1

n! ~ l 2n!!
@~ l 22n21! l 11

1~ l 22n! l~2n11!#, ~7!

where nmax5Int@( l 21)/2#. If Eq. ~6! is satisfied then the
fixed point of Eq.~5! will be nonzero. Note that the long
term behavior of the damage under the annealed approx
tion is different from that in the quenched system, whe
D(t) must be periodic. Figure 3 shows the fixed points
Eq. ~5!, D!, obtained by settingD(t11)5D(t). In the or-
dered phase, the only fixed point is given byD!50. In the
chaotic phase,D!50 becomes unstable, as Eq.~6! ensures,
and the nonzero fixed point is stable. This prediction for
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location of the phase transition agrees with that of the beh
ior of the average period as described in the previous sec

C. Mutual information

1. Mutual information peak

Having examined the basic dynamical behavior of the n
work and ascertained the location of the order-chaos tra
tion, we now relate the network’s dynamics to its ability
perform computations. Mutual information@30# is chosen as
the diagnostic because an essential requirement for collec
computation is the communication of information betwe
cells. Let the mutual information of neuronB and one of its
input neurons,A, be denoted byI (A,B). Mutual information
is defined as

I ~A,B!5H~A!1H~B!2H~A,B! ~8a!

5H~A!2H~AuB! ~8b!

5H~B!2H~BuA!, ~8c!

whereH(A) is the Shannon information of cellA. This has
the definition

FIG. 3. The fixed points of Eq.~5!, D!, as a function ofK.
5-4



r

m
th

-
tic

p
th
et
e
on
at
s
ct
v

ion
The

s in

a
al
um-

ex-
for
hat
lts
the

on
eu-

is
he

ive

to

of
i-

n
-
r the
re-
en-

-
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H~A!52 (
sA50,1

P~sA!log2 P~sA!. ~9!

The probabilities in Eq.~9! are obtained by averaging ove
time for each neuron:P(sA51)5pA5sA and P(sA50)
512pA . Thus,

H~A!52pA log2 pA2~12pA!log2~12pA!. ~10!

The joint entropy H(A,B) and the conditional entropy
H(AuB) have the usual definitions,

H~A,B!52 (
sA50,1

(
sB50,1

P~sA ,sB!log2 P~sA ,sB!,

~11!

H~AuB!52 (
sA50,1

(
sB50,1

P~sA ,sB!log2 P~sAusB!.

~12!

Since we are interested in the amount of information co
municated to a neuron from one of its inputs, we measure
mutual information of a neuron at timet and its input at the
previous time stept21.

The average information per neuron^H& and the average
mutual information per connection̂I & are plotted versusK
in Fig. 4. In the ordered phase,^H& and ^I & are zero in the
limit N→`. As described in Sec. II A, the fraction of neu
rons frozen in thes50 state approaches 1. In the chao
phase,̂ H& increases monotonically whilêI & reaches a peak
near the transition and then decreases as the number of in
becomes larger. This is a key result because it says
while more information is available in a more chaotic n
work, the most information can be communicated in a n
work that is close to the transition. Thus, mutual informati
increases as the system crosses the transition and inform
percolates through the network, and then it decreases a
system dynamics become more chaotic and the neural a
ity becomes progressively decorrelated. The network ne

FIG. 4. Average information per cell^H&, •, left axis, and av-
erage mutual information per connection^I &, s, right axis, as a
function of K ~simulation data forN550 000; average of 100 net
works!.
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becomes completely random, as the RBN does asK→N.
This is evidenced by the fact that the average informat
does not approach 1 bit, as it does in the random map.
reason for this is that the update rule, Eq.~1!, can produce

only a small fraction of the 22
K

possible Boolean functions
of K inputs. These tend to be the least sensitive to change
the input states@31#.

Despite the inherent discreteness ofK, we can get a more
detailed look at the transition by looking at a network with
distribution ofK values. This more closely reflects biologic
neural networks since all neurons do not have the same n
ber of inputs. The quantitieŝH& and^I & are plotted again in
Fig. 5 for a Poisson distribution ofK values. There is little
difference between this case and uniform connectivity,
cept that the mutual information decays slightly faster
largeK. This result is useful because it allows us to see t
the transition atK52 is sharp. It also suggests that resu
obtained with uniform connectivity can be generalized to
more realistic case of a distribution of inputs.

2. Threshold

In order to show that the peak in the mutual informati
near the transition is robust we investigate a network of n
rons with nonzero thresholds. The effect of the threshold
to inhibit the percolation of active regions, thus ordering t
system and increasing the critical value ofK. Since increas-
ing T necessarily reduces the activity, a more informat
measure of information transfer is^I &/p, which is plotted in
Fig. 6 for several threshold values. This quantity is closer
the ‘‘bits/spike’’ that is often reported@32#.

The scale for the thresholds is set by the distribution
weightsr(wi j ), which is chosen here to be a uniform distr
bution ranging from21 to 11. As expected, the transitio
occurs at higher values ofK as the neural threshold in
creases. In each case, the mutual information peaks nea
transition. The locations of the transitions agree with the p
dictions of both the annealed approximation and the dep
dence of the average period on system size.

FIG. 5. Average mutual information per connection^I &: •, Pois-
son distribution of inputs with meanK; ands, uniform connectiv-
ity K ~simulation data forN550 000; average of 100 networks!.
5-5
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It may seem at first counterintuitive that the average m
tual information is larger for small values of the thresho
than for zero threshold, since the threshold lowers the a
age activity. However, this can be understood by examin
the distributions of activities for various thresholds. For ze
threshold the distribution has peaks at 0 and 1, correspon
to those neurons that are fixed in thes50 ands51 states,
respectively. For a relatively small value of the threshold,
peak at 1 is removed and the distribution becomes m
uniform, increasing the average information.

3. Higher connectivity

One apparent problem in the foregoing discussion is
the critical connectivity of the model networks is so low
Physiological networks generally have much higher conn
tivity. Some neurons have as many as 104 synapses, and ye
they are not in perpetual chaos. In fact, many areas of
cortex are fairly quiet most of the time. Resolving this pro
lem requires the addition of several physiologically deriv
features. We will indicate some of these features in the
cussion. For now, we wish only to examine how the critic
connectivity increases with larger values of the threshold

Making the correspondence between the threshold v
ableT and a biological threshold voltage is somewhat di
cult. Some cortical neurons need to integrate many syna
inputs in order to cross threshold. The ratio of the size of
threshold to that of an average synaptic input defines
realistic value ofT.

For higher threshold, the simulation time becomes i
practical. This is because the critical connectivity becom
much larger, andN has to grow accordingly to keep th
connectivity dilute. Since the peak in the mutual informati
follows the phase transition, we can use the annealed
proximation to see how the location of the phase transit
varies with threshold and connectivity. In the annealed

FIG. 6. Average mutual information per connection normaliz
by activity, ^I &/p, versusK for various thresholds:d T50; s,
T50.3; 3, T50.5; *, T50.7. Average mutual information pe
connection normalized by activity,̂I &/p, versusK for various
thresholds:d, T50; s, T50.3; 3, T50.5; * , T50.7; 1, Pois-
son distribution of inputs withT50.5 ~simulation data forN
550 000; average of 100 networks!.
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proximation forT@1 andK@1, Eq. ~6! becomes

dD~ t11!

dD~ t !
U

D(t)50

5K
1

2A2ppKs2
expS 2

T2

2pKs2D , ~13!

where s2 is the variance ofr(wi j ). The critical value of
K,Ke, is obtained by setting Eq.~13! equal to 1, which yields

ps2Kclog2S Ke

8pps2D5T2. ~14!

The average activityp is found by solving an equation simi
lar to Eq.~4! that takes into account a nonzero threshold. F
K@1, this equation can be written as

p~ t11!5
1

2 (
n51

K

p~ t !n@12p~ t !#K2nS K

n D erfcS T

A2ns2D ,

~15!

where erfc(•••) is the complementary error function. De
pending on the values ofK and T/s, Eq. ~15! may have a
stable nonzero solution. Figure 7 is a plot ofp(t11) versus
p(t) for three values ofT for K550. For larger thresholds
the only stable solution isp50, i.e., the network has no
spontaneous activity. It must be assumed that activity ar
from external stimulation of the network. In Fig. 8,Kc is
plotted as a function ofT for several values ofp. These data
show that asT is increased,Kc increases rapidly to values i
the range of connectivities seen in real neural networks.

4. Nonlinear summation

A criticism of some neural network models is that th
rely on linear summation of inputs@33#. This is in contrast to
some biological neurons, whose dendrites have been sh
to add synaptic inputs in highly nonlinear ways@34#. Synap-
tic interaction can occur in both passive and active dendri
allowing neurons to implement a fuller range of Boole
functions. To see how nonlinear summation affects the

FIG. 7. Average activityp(t11) as a function ofp(t) for K
550: dashed line,T51; solid line,T51.5; dotted line,T52. The
filled circles mark the stable nonzero fixed points; the open cir
marks the unstable nonzero fixed point.
5-6
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MUTUAL INFORMATION IN A DILUTE, . . . PHY SICAL REVIEW E 63 041905
sults of this paper, we measure the average mutual infor
tion in random Boolean networks, the extreme case of n
linear summation. Figure 9 shows the mutual information
a function of connectivity for a Boolean network. The pe
near the transition is clearly present. It is sharper and ta
than for the neural network with linear summation. Mutu
information provides a method for quantifying the compu
tional benefit of various degrees of nonlinear summation

III. DISCUSSION

In this paper, we use the concept of mutual information
investigate the relationship between a network’s dynam
and its ability to perform computations. To determine t
location of the order-chaos transition, we examined the
pendence of the average period on system size and ap
the annealed approximation to determine the time evolu
of the distance between nearby trajectories. We showed
the average information per cell and the average mutua
formation per connection vary with the number of inpu
We found that, althougĥH& increases in the chaotic phas
^I & reaches a maximum near the transition.

FIG. 8. The critical connectivityKc as a function of thresholdT
according to Eq.~13!: s, p50.1; •, p50.2; 3, p50.3.

FIG. 9. Average mutual information per connection^I & versusK
for a random Boolean network~simulation data forN510 000;
average of 100 networks!.
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We demonstrated the robustness of this result by exte
ing the model to incorporate the biologically relevant cas
of nonzero threshold and nonlinear summation. We show
that, while the location of the transition changes with t
threshold, mutual information always peaks near the tra
tion. For larger thresholds, the annealed approximation p
dicts thatKc increases rapidly to values that are closer to
connectivities observed in biology. We also showed that
results carry over to the random Boolean network—the
treme case of nonlinear summation.

While the present model includes such physiological f
tures as nonzero thresholds and dilute, asymmetric con
tions, it is clearly still quite removed from biological reality
The two-state neuron is a coarse graining of the aver
firing rate, which is itself an approximation of the neur
spike train. However, spiking neurons are also binary o
different time scale, and the model could easily be adjus
to account for this with the introduction of a second tim
scale—one for the refractory period and one for the ti
over which a neuron integrates inputs. In fact, the pres
model can represent a spiking network for the special c
where the integration time is equal to the refractory peri
In this case,s51 would represent a spike within a sma
time bin on the scale of the refractory period ands50
would represent the absence of a spike. Such a change w
be unlikely to eliminate the phase transition or the peak
mutual information. It would increase the average mut
information, though, because some additional informat
could be transmitted in the individual spike timing. A spi
ing model would require a source of noise which wou
make the model nondeterministic. In the present mod
noise in the spike train is time averaged to produce the
nary state.

The model also lacks spatial dimensionality since a c
nection between any two neurons is equally probable. Ho
ever, it has already been shown that the phase transition
occurs in two- and three-dimensional RBNs. Thus, it is like
that the results of this paper will carry over as well. In
three-dimensional network, different patterns of connectiv
could be examined.

These simplifications are reflected in the somewhat l
level of mutual information and the small number of inpu
for which the transition occurs. However, our results sugg
that there is a direct relation between the dynamics of
system and the peak in mutual information. Genera
changes in the details of the underlying system will alter
location of the phase transition and the height of the mut
information peak, but will not eliminate them. The key com
ponent appears to be the transition from isolated cluster
activity to the percolation of activity throughout the networ
Future work will incorporate more of the physiological fe
tures mentioned above, bringing the model even close
biology and allowing comparison with experimental data.
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APPENDIX A: „0,1… NEURONS VERSUS„À1,¿1…
NEURONS

The choice of representation depends on which aspec
neural networks are the primary focus of study. Neural n
work pioneers such as McCulloch and Pitts used~0,1! neu-
rons to study the network as a logical device analogous
digital computer@35#. Later workers, such as Hopfield@13#
and Amit et al. @14#, used (21,11) neurons to take advan
tage of the similarity of their models to spin-glass syste
and analyze them with the tools of statistical mechanics
this paper, we choose~0,1! neurons because we are inte
ested in studying physiologically realistic neurons and
influence of the neuronal threshold on network dynamics
the case of (21,11) neurons, an inhibitory connectio
(wi j ,0) coming from an inactive neuron (Sj521) acts as
an excitation. Similarly, an excitatory connection from
inactive neuron is the same as an inhibition. This leads
dynamics that are difficult to reconcile with physiologic
networks. For example, a neuron with all of its inputs ina
tive would have a 50% chance of being active at the n
time step. A real neuron would be inactive in such a sit
tion. It is only in the ~0,1! representation that the synapt
inputs maintain their excitatory and inhibitory charact
Only with this invariance can the update function represe
sum of voltages.

At first glance, the two representations may seem ma
ematically equivalent. Although switching representatio
amounts to a simple change of variables it is easy to sh
that this change of variables will change the distribution
thresholds in potentially important ways. If we make t
change of variables,Si52s i21, so thatSiP$21,1%, the
update function

s i~ t11!5QF(
j

wi j s j~ t !2Ti G ~A1!

becomes

Si~ t11!5sgnF(
j

wi j Sj~ t !1(
j

wi j 22Ti G . ~A2!

The transformation generates an extra thresholdlike te
( jwi j , which is the sum overK random variables chose
from the distributionr(wi j ). Let r(wi j ) have a mean ofwo
and a variance ofs2. For a highly connected network (K
@1), the central limit theorem is applicable, and the te
( jwi j is a random variable from a Gaussian distribution w
a mean ofK3wo and a variance ofK3s2. If r(wi j ) is
symmetric, thenwo50, and thus the average value of th
extra term is zero. But, since the variance is large, the e
threshold term can be very large. For a weakly connec
~dilute! network such as the one described in this paper,
extra term is the sum of a small number of random variab
In general, this term is nonzero and different for each neu
There is no possible distributionr(wi j ) that will make the
extra term always zero. Essentially, zero threshold in
representation corresponds to a broad distribution of thre
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olds in the other. The inequivalence of the two represen
tions has been pointed out previously~for example,@1,36#!.

APPENDIX B: DERIVATION OF THE AVERAGE
ACTIVITY

The distribution of activitiesf (p) is a complicated func-
tion for which no analytic solution is known. Following@37#,
it can be expressed as the solution to the integral equati

f ~p!5E dwi1r~wi1!•••dwiKr~wiK !

3E dp1f ~p1!•••dpKf ~pK!

3dFp2 (
s150,1

P~s1up1!••• (
sK50,1

P~sKupK!

3QS (
j

wi j s j D G . ~B1!

Using Eq.~B1! the average activity can written as

p5E dp8p8E dwi1r~wi1!•••dwiKr~wiK !

3E dp1f ~p1!•••dpKf ~pK!

3dFp82 (
s150,1

P~s1up1!••• (
sK50,1

P~sKupK!

3QS (
j

wi j s j D G . ~B2!

Integrating overp8 gives:

p5E dwi1r~wi1!•••dwiKr~wiK !

3E dp1f ~p1!•••dpKf ~pK!

3 (
s150,1

P~s1up1!••• (
sK50,1

P~sKupK!QS (
j

wi j s j D .

~B3!

Integrating over the weights gives the following for any d
tribution of weightsr(wi j ) that is symmetric about zero:

p5E dp1f ~p1!•••dpKf ~pK!

3 (
s150,1

P~s1up1!••• (
sK50,1

P~sKupK!

3
1

2
~12ds1,0•••dsK,0!. ~B4!
5-8



r
ro
em
r
a-
re

ha

he
g

k

o
n

at

n-
i-
t

s.
ur in

ec-
ant
ll

ne,

MUTUAL INFORMATION IN A DILUTE, . . . PHY SICAL REVIEW E 63 041905
Evaluating the sums over all input states:

p5
1

2
2

1

2 F E dp1f ~p1!~12p1!GK

~B5!

5
12~12p!K

2
. ~B6!

APPENDIX C: FINITE-SIZE EFFECTS

In studying this system, significant finite-size effects we
encountered. Such effects are common in percolation p
lems ~see@38#! and are expected to be larger in this syst
since there is variation in the percolation parameter fo
given value ofK. One finite-size effect occurs in the me
surement of the average activity of a network in the orde
phase. This quantity is zero in the limitN→` but is nonzero
for finite N because of small localized periodic attractors t
can exist. ForK52, in the range ofN540 to N520 000,
the average activityp goes to zero as power law inN: p(K
52);N20.3.

A more important finite-size effect is that which alters t
location of the peak in the mutual information. The avera
mutual information̂ I & is plotted versusK for several values
of N in Fig. 10. ForN580, the peak is atK53, the lowest
value of K in the chaotic phase. AsN increases, this pea
decreases and a new peak appears atK55. By N550 000,
the curve appears to reach a limiting form. Examination
Fig. 10 reveals that the finite-size effect displayed here is
a gradual shift in peak location with increasingN. Rather,
there are two peaks—one atK53 that decreases and one
K55 that increases slightly.
,

s.
u

ev
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The origin of both of these finite-size effects can be u
derstood by looking at the distribution of activities for var
ous system sizes. At smaller values ofN, there are peaks a

multiples of the reciprocals of small integers (1
2 , 1

3 , 2
3 , 1

4 , 3
4 ,

etc.!, which result from local attractors with short period
These attractors are due to small feedback loops that occ
smaller networks but become increasingly rare asN→`. In
models that are three dimensional and have local conn
tions, these types of attractors may play a more import
role since they would be likely to occur in networks of a
sizes.

FIG. 10. Average mutual information per connection^I & versus
K for various system sizes from computer simulations: dotted li
N5200; dashed line,N5800; thin solid line,N52000; thick solid
line, N550 000.
.
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