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Neural networks with asymmetric synaptic connectiong; ¢ w;;) display a broad range of dynamical
behavior including fixed point, periodic, and “chaotic” trajectories. Previous work has shown that such
networks undergo an order-chaos phase transition as various network parameters, such as the connectivity or
the degree of asymmetry, are changed. Here, using an information theoretic approach, we present results which
suggest that neurons are able to communicate information to each other most effectively in networks that are
near the order-chaos transition. We then extend the model to incorporate some biologically relevant features.
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[. INTRODUCTION connections. The state of each neuron is represented by the
variableo; €{0,1}, wherei=1, ... N. Theoc=0 state rep-

Much progress has been made in understanding emerger@sents a neuron that is at réeff) and theo=1 state rep-
computation in model neural networks. Networks of binaryresents a neuron that is firing at its maximum rais). At
neurons provide a general framework for simulating cogni-each time step, all the neurons in the network are updated in
tive processes such as pattern recognition, associativearallel according to the rule
memory, and learningl]. Neurobiologists have made suc-
cessful models of small functional networks of known neu- oi(t+1)=0
roanatomy(e.g., oscillating networks that control rhythmic
activities such as digestidr2] and simple locomotiof3]), . o .
but the principles of generalized computation remain an opeMherew;; is the strength of the synaptic input from cptio
question. In this paper, we study the computational properce” i, T; is the threshold of cell, and® is the Heaviside step
ties of a neural network consisting of binary neurons withfunction. If there is a synaptic connection from cetb cell
dilute asymmetric synaptic connections. This simple model, then the weightv;; is a random variables chosen from a
allows us to simulate large networks which can reflect moredistribution p(w;;); otherwise, it is zero. Different distribu-
of the architecture and dynamics of real neural networks. tions of synaptic strengthg(w;;), can be chosen to reflect

Our main goal is to determine the dynamical behavior thaglifferent neuronal architectures. Since a physiologically re-
maximizes the network’s ability to perform computations. alistic distribution would likely be multimodal, comprised of
To this end, we apply information theory, measuring the av-Separate subpopulations of excitatory and inhibitory synaptic
erage mutual information between pairs of pre- and postsyriveights, an appropriate simplification is a relatively uniform
aptic neurons. In order for a network to perform a collectivedistribution. Similarly theT; can be chosen to represent the
computation, information must be communicated across syrknown physiology of spike initiatiotisee Sec. Il C 2
aptic connections. Previous workers have demonstrated that The order-chaos phase transition has been studied in ran-
neural networks with asymmetric connections undergo &lom Boolean networkéRBNs) by Kauffman[4—6] and in
transition from ordered to chaotic behavior as certain netdilute asymmetric neural networks by Kurtgn]. Kurten's
work parameters, such as the connectivity, are changed. Waodel uses {1,1) neurons and zero threshold. We must use
find that the average mutual information has a peak near thé,1) neurons in order to investigate the effects of nonzero
order-chaos transition. This implies that the network carneuronal thresholds and for the update function to corre-
most efficiently communicate information between cells in aspond to realistic postsynaptic integration. Appendix A ex-
narrow range of connectivities. We derive analytical predic-plains why these two representations are not generally
tions of the network activity as well as the location of the equivalent. We show that making this change of variables in
phase transition. The mutual information peak becomes inthe update rule, Eq1), generates an extra thresholdlike term
creasingly pronounced when the basic model is extended t#at is different for each neuron and significantly alters the
incorporate more biologically realistic features, such as d@etwork dynamics. In particular, the distribution of activity
variable threshold and nonlinear summation of inputs. Inevels is different, strongly affecting the computed informa-
general, the peak in the mutual information near the phaston and mutual information discussed in Sec. Il C.
transition is a robust feature of the system for a wide range of Other recurrent asymmetric neural network models that
assumptions about postsynaptic integration. have been studied include a fully connected network where

The network consists dfl binary neurons, each receiving the synaptic weights consist of a symmetric part and an an-
input fromK other randomly chosen neurons. TReynaptic  tisymmetric part:wi,-=Wﬁ+>\Wﬁ. This system exhibits a
inputs are a mixture of excitatory and inhibitory synaptic phase transition as is varied[8]. Crisantiet al. examined

, @

EJ_) wijo(t) =T,

1063-651X/2001/6@/041905%10)/$20.00 63 041905-1 ©2001 The American Physical Society



ELLIOT GREENFIELD AND HAROLD LECAR PHYSICAL REVIEW E63 041905

the behavior of entropic quantities at this transitiehand in  larger and remain finit¢11]. Derrida and Pomeau success-
a globally coupled logistic mafdL0]. Another model derives fully modeled this feature with their “annealed approxima-
its asymmetry from the fact that a certain fraction of thetion” [17]. Earlier it was showii4] that the average period
connections of a symmetric network are giit]. For a fully  grows exponentially with the system sid&in the chaotic
connected network of neurons with a continuous range ophase, and it is either constant or increases as a poviéirof
firing rates, Sompolinsket al. showed a transition to chaos the ordered phase. Both findings correspond to the explana-

as the degree of nonlinearity of the update function was intjon of the phase transition as resulting from the percolation
creased[12]. We chose completely asymmetric synaptic ¢ active regions.

weights and dilute connections to more closely model typical
biological networks.

The Hopfield neural networkl3,14], which is the proto-
typical model of associative memory, employs the simplify-
ing assumption of symmetric synaptic weightg; =w;; .
Though biologically unrealistic, this assumption allows a
Lyapunov function to be defined:

How does the ability of the network to perform computa-
tions depend on its dynamics? Computational ability can be
measured directly by training the network to perform a par-
ticular task and rating its success. However, one drawback to
this approach is that the results would likely depend upon the
task that is chosen and the learning algorithm that is em-
ployed. It can also be difficult to compare such results with
1 experimental data.
E=—3 > Wi 2 Computational ability can also be measured indirectly by
N looking at quantities that are believed to be necessary for or
Accordingly’ the System relaxes from its initial state into theindicative of Computation, such as information transfer, stor-
closest energy minimum, which is identified as a memoryage, and processind8]. The indirect method requires no
Networks with asymmetric connections have no Lyapunowspecification of what type of computation is being performed
function, and thus can have limit cycles in addition to fixedand therefore relates more closely to our level of understand-
points. Large asymmetric systems can manifest seeminglyng of how higher level computation is performed in the
aperiodic behavior resembling deterministic chaos. brain. For these reasons, we take the indirect approach in this
Kauffman showed that a random network of Boolean auwork, and the quantity we examine is the average amount of
tomata undergoes a transition from ordered to chaotic behawaformation communicated between cells, as measured by
ior as a function ofK, the number of inputs to each cell the mutual information.
[4-6]. ForK=2, the network is in the “frozen” phase, with |n the language of computational theory, the direct mea-
most of the elements fixed in one state or the other and onl¥urement quantifies “useful computation” and the indirect
small, isolated pockets of activity. Fé>2, the active re- measurement “intrinsic computation.” Intrinsic computation
gions percolate throughout the network, and the network i$aces an upper bound on useful computafi®g]. In the
said to be in the “chaotic” phase. Later workers showed thatyresent context, the fact that a high level of information is
this transition carries over to dilute asymmetric neural netbeing communicated between cells does not imply that the
works[11,15,1§ at similar values oK, depending on model ,qyork is performing a complex computation. However, the

assumptions. This range of critical connectivities is farconverse is true—computation does require the communica-
smaller than would be expected for a real neural network

e . tion of information.
The low values oK are not intrinsic to this type of neural Several workers have studied the relation between com-
network, but result from subsidiary assumptions such as the

zero threshold criterion. The transition in our neural network\%'tit'on ?nd (()jrdﬁr-chhaoi trr]an§|t|on]§ ml at\)/ane(;y oflls?/stems.
model also occurs & =2 for zero threshold, but it increases V/oliram found that the behavior of rule-based cellular au-

significantly for more realistic threshold values. tomata could be classified as steady state, periodic, chaotic,

The “chaotic” behavior referred to above is not chaos in O “complex.” Cellular automata with complex dynamics
the sense of a positive Lyapunov exponent. A Lyapunov eXexhlb{t behavior that is |nt§rmed|ate bgtween periodic and
ponent cannot be defined for a two-state element. Since tHeéhaotic. Wolfram hypothesized that this class of automata
dynamics are deterministic and the state space is fintte (2may be capable of universal computatif20,21]. Crutch-
possible network statgsall trajectories must be periodic. field quantified the behavioral complexity of continuous dy-
However, the sensitivity of a trajectory to a small perturba-namical systems using his “statistical complexity” measure,
tion can be generalized by looking at the spread of “dam-which is the size of the minimal binary automata network

age” between two nearby states. needed to reproduce the system’s dynamd. He found
The damage can be defined as the normalized Hamminiat as a system moves from ordered to chaotic behavior, for
distance between two network Statégg) and 5’(t), example, the period doubling route to chaos of the logistic

map, its statistical complexity peaks at the transition point.

Similar ideas about phase transitions and computation have
been applied to the study of biological systems, including ant
colonieg[23] and the immune systef24,25. Recently, Pac-

If the configurations are initially very close, so tha(0)  zuskiet al. have demonstrated that a network of competing

<1, then in the ordered phag®(t) will tend to decay to Boolean automata evolves by an evolutionary process to the
zero, whereas in the chaotic phadét) will tend to grow  border of order and chagg6].

1
D=3 2 lof(H-ai(v)]. 3
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FIG. 1. Average activity as a function &f. X, solution to Eq.
(4); », simulation data folN=80 (average of 1® networks; O, 102 F
simulation data foN= 10 000(average of 250 networks -

Il. RESULTS

o A
A. Average activity v

The most general feature of the network’s dynamics is the
average fraction of neurons that are in tne1 state(or,
equivalently, the average likelihood that any one neuron is in
this state. Unlike the RBN, where there is complete symme-
try between the 0 and 1 states, here there is a bias toward the 100 Lt L L L
0 state(even with zero thresho)dsince a neuron with all of 0 20 40 60 80 100 120 140
its inputs off will also be off. The average probability that a (b) N
neuron is on at time+1, p(t+1), can be written in terms FIG. 2. Average periodT) in units of time steps, as a function
of p(t), the average probability that its inputs were on atof system size: (a) O, K=1 and *,K=2 and(b) «, K=6 (simu-
time t. We show in Appendix B that the average activity |ation data, average of §etworks. Solid line indicates power
follows the equation law fit in (a) and exponential fit ir(b).

1-[1-p(H)]"
——

p(t+1)= (4)  creases as a power df ((T)~N¥), reflecting the distribu-
tion of cycle lengths in the isolated active regions. In the
chaotic phase it increases exponentiallyNr({T)~e*(K)N)

[6]. The average denoted Wy- -) is the average over trials,
in Fig. 1. The agreement with simulation data is nearly exac here each trial has a different set of synaptic weights and

and becomes increasinalv aood Ksincreases. These data nitial conditions. This shows that as the active regions per-
gy 9 o " ,, colate, the network can wander through a macroscopic frac-
correspond well to Flyvbjerg’s idea of the “stable core

) tion of its state space. For a completely random sy<tber
[27]. The stable core refers to the fraction of frozen elements‘,random map’), the dependence of the average period on

which is 1 in the ordered regime and less than 1 in the cha; . :
otic regime in the limitN— . Here, in the ordered regime, s_ysfte/rg Zs;lzlze[;:g]n be solved exactly and is found tdDe
the frozen elements are all in the=0 state. Flyvbjerg ™ '

points out that this quantity plays the role of an order param-

eter for the transition in RBNs. 2. Annealed approximation

The steady state average activitys the fixed point of Eq.
(4). The solutions to Eq4) for differentK values are shown

Although analytic solutions exist for the dynamics of the
B. The phase transition RBN for the special cases d€=1 [29] and K=N [28],
approximations must be made for all intermediate values of
K. Derrida and Pomeau’s “annealed approximatioff7]

The location of the phase transition is determined by twaallows an equation to be written for the time evolution of the
methods. We examine the behavior of the average period afistance between two network configurations. This approxi-
a function ofN, and we also calculate the evolution of the mation effectively ignores correlations that build up between
distance between nearby trajectories using the annealed ajre state of a neuron and the synaptic weights and states of
proximation. Figure 2 shows the dependence of the averagés inputs by averaging over them at each time step. They
period on the number of neurons fir=1, 2, and 6. In the showed that the annealed approximation closely matches
ordered phase the average period is either constant or isimulation data for a network with “quenched” disorder.

1. Average period
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The equation is a little more complicated for the caségf)  at Eq.(5), which predicts the average distance between two
neurons than for Boolean elements er],1) elements since configurations at timeé+1 as a function of this distance at
p# 3 for all K. Adapting the derivation fromi15] we arrive  timet,

& K& K—n

n 1 n n
X[ZO (E) (B) f Xmp(Xl). .. anp(Xa)J dY1P(Y1) .. dpr(yB)

(23

SERE NI

=1 i=1

dezlp(zl)"'dznfﬁp(znfﬁ)

We use solutions to Ed4) to find the value op to be used location of the phase transition agrees with that of the behav-
in Eqg. (5). Equation(5) is the same for an annealed and aior of the average period as described in the previous section.
guenched network for one time step for two initial uncorre-

lated network states. Iterating the equation further in time is C. Mutual information
the annealed approximation. _ _
The chaotic phase is defined by an increas® i) for 1. Mutual information peak
initially close configurations, Having examined the basic dynamical behavior of the net-
work and ascertained the location of the order-chaos transi-
dD(t+1) tion, we now relate the network’s dynamics to its ability to
—apn >1. 6) perform computations. Mutual informati¢80] is chosen as

D(1)=0 . . ) . .
© the diagnostic because an essential requirement for collective

We choose a uniform distribution far(w;;) for mathemati- computation is the communication of information between
cal convenience and because a physiologically realistic disce!ls- Let the mutual information of neurdhiand one of its
tribution would be a complicated multimodal distribution iNPUt neuronsA, be denoted by(A,B). Mutual information
comprised of separate distributions of weights for excitatory$ defined as

and inhibitory synapses. We find empirically that the results _ _

do not vary significantly for different distributions. For a H(A.B)=H(A)+H(B)—H(A.B) (83)
Eglfé);rpr:ed;zggbitslon forp(w;;), the derivative in Eq(6) can =H(A)—H(A|B) (8b)

dD(t+1) K NRvET =H(B)—H(BJ|A), (80)
dD(t) D(t)=0_5( LA whereH (A) is the Shannon information of ceM. This has
1 the definition
_ . (K-1 1
XZ p'(l—p)K ! l( | 2|(|+1) 0.20 — T T T T T T 1
Mmax 1 ®
—1)"———[(1—-2n—1)*1 0.15 | ¢ .
xgo( D" =yl -2n-1) .
+(1-2n)'(2n+1)], 7 . [ o ]
(I-2n)(2n+1)] (7 o ool |

where ng, .= Int[ (1—-1)/2]. If Eq. (6) is satisfied then the
fixed point of Eq.(5) will be nonzero. Note that the long-
term behavior of the damage under the annealed approxima- 0.05 |- .
tion is different from that in the quenched system, where
D(t) must be periodic. Figure 3 shows the fixed points of
Eq. (5), D*, obtained by settingd (t+1)=D(t). In the or- 0-000
dered phase, the only fixed point is given By=0. In the

chaotic phaseD*=0 becomes unstable, as E§) ensures,

and the nonzero fixed point is stable. This prediction for the  FIG. 3. The fixed points of Eq5), D*, as a function oK.
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FIG. 4. Average information per ce{H), °, left axis, and av- FIG. 5. Average mutual information per connectidi: ¢, Pois-

erage mutual information per connecti¢h), O, right axis, as a son distribution of inputs with meals; andO, uniform connectiv-
function of K (simulation data folN=50 000; average of 100 net- ity K (simulation data folN=50 000; average of 100 netwojks
works).

becomes completely random, as the RBN doedasN.
H(A)=— >, P(oa)log, P(ap). (9)  This is evidenced by the fagt that the average information
op=01 does not approach 1 bit, as it does in the random map. The
reason for this is that the update rule, Efy, can produce

The probabilities in Eq(9) are obtained by averaging over . . ]
only a small fraction of the ) possible Boolean functions

time for each neuronP(o,=1)=pa=0c, and P(o,=0)

—1—p,. Thus, of K_inputs. These tend to be the least sensitive to changes in
the input state$31].
H(A)=—palog, pa— (1—pa)log(1—pa). (10 Despite the inherent discretenessgfwe can get a more

o N detailed look at the transition by looking at a network with a
The joint entropy H(A,B) and the conditional entropy gjstribution ofK values. This more closely reflects biological

H(A|B) have the usual definitions, neural networks since all neurons do not have the same num-
ber of inputs. The quantitigdd) and(I) are plotted again in
HAB)=— 2 > P(oa,0p)l00P(ca,08), Fig. 5 for a Poisson distribution df values. There is little
op=0,105=0,1 difference between this case and uniform connectivity, ex-

(11) cept that the mutual information decays slightly faster for
large K. This result is useful because it allows us to see that
_ the transition alk=2 is sharp. It also suggests that results
H(A|B)=— P(op,0p)log, P . . ) ) - .
(AlB) UAZO,l 0520-1 (74, 05)10g P(0a] 75) obtained with uniform connectivity can be generalized to the
(12 more realistic case of a distribution of inputs.

Since we are interested in the amount of information com-

municated to a neuron from one of its inputs, we measure the 2. Threshold
mutual information of a neuron at tinteand its input at the In order to show that the peak in the mutual information
previous time step—1. near the transition is robust we investigate a network of neu-

The average information per neur¢H) and the average rons with nonzero thresholds. The effect of the threshold is
mutual information per connectiofi) are plotted versu&  to inhibit the percolation of active regions, thus ordering the
in Fig. 4. In the ordered phasé&d) and(l) are zero in the system and increasing the critical valuekaf Since increas-
limit N—o. As described in Sec. Il A, the fraction of neu- ing T necessarily reduces the activity, a more informative
rons frozen in thes=0 state approaches 1. In the chaotic measure of information transfer {§)/p, which is plotted in
phase{H) increases monotonically whilg) reaches a peak Fig. 6 for several threshold values. This quantity is closer to
near the transition and then decreases as the number of inpule “bits/spike” that is often reportef32].
becomes larger. This is a key result because it says that, The scale for the thresholds is set by the distribution of
while more information is available in a more chaotic net-weightsp(wj;), which is chosen here to be a uniform distri-
work, the most information can be communicated in a netbution ranging from—1 to +1. As expected, the transition
work that is close to the transition. Thus, mutual informationoccurs at higher values d as the neural threshold in-
increases as the system crosses the transition and informatioreases. In each case, the mutual information peaks near the
percolates through the network, and then it decreases as th@nsition. The locations of the transitions agree with the pre-
system dynamics become more chaotic and the neural actidictions of both the annealed approximation and the depen-
ity becomes progressively decorrelated. The network nevedence of the average period on system size.
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FIG. 6. Average mutual information per connection normalized FIG. 7. Average activityp(t+1) as a function ofp(t) for K
by activity, (I)/p, versusK for various thresholds® T=0; O, =50: dashed lineT=1; solid line,T=1.5; dotted lineT=2. The
T=0.3; X, T=0.5; *, T=0.7. Average mutual information per filled circles mark the stable nonzero fixed points; the open circle
connection normalized by activity!)/p, versusK for various  marks the unstable nonzero fixed point.
thresholds®, T=0; O, T=0.3; X, T=0.5;*, T=0.7; +, Pois-
son distribution of inputs withT=0.5 (simulation data forN proximation forT>1 andK>1, Eq.(6) becomes
=50000; average of 100 netwopks
dD(t+1) 1 p( T? )
It may seem at first counterintuitive that the average mu- dD(t) |\ K2‘/27.rp|<02 & 2pKo?)’
tual information is larger for small values of the threshold
than for zero threshold, since the threshold lowers the avervhere o is the variance ofo(wj;). The critical value of
age activity. However, this can be understood by examining K., is obtained by setting Eq13) equal to 1, which yields
the distributions of activities for various thresholds. For zero
threshold the distribution has peaks at 0 and 1, corresponding ) Ke )
to those neurons that are fixed in the=0 ando=1 states, po°Kclog, 8mpa? =T (14)
respectively. For a relatively small value of the threshold, the
peak at 1 is removed and the distribution becomes mor&he average activitp is found by solving an equation simi-
uniform, increasing the average information. lar to Eq.(4) that takes into account a nonzero threshold. For
K>1, this equation can be written as

(13

3. Higher connectivity

K
1 K T
Ong_apparent pr_ok_)Iem in the foregoing discus_sion is that p(t+1)= > 2 p(H)M1—p(t)]K" )erfc( _)
the critical connectivity of the model networks is so low. n=1 n v2no
Physiological networks generally have much higher connec- (15

tivity. Some neurons have as many a$ $9napses, and yet
they are not in perpetual chaos. In fact, many areas of th )
cor}t/ex are fairly I[c)luitlzt most of the time. Resolvi%wg this prob—pendlng on the valu_es d(_and T/‘T’ Eq. (15 may have a
lem requires the addition of several physiologically derivedStaPle nonzero solution. Figure 7 is a plotpdi +1) versus
features. We will indicate some of these features in the disP(t) for three values off for K=50. For larger thresholds,
cussion. For now, we wish only to examine how the criticalthe only stable ?’0_'”“0” ip=0, i.e., the network _has no
connectivity increases with larger values of the threshold. Spontaneous ac'qwty. I_t must be assumed that .act|V|ty. arises

Making the correspondence between the threshold variom external stimulation of the network. In Fig. 8, is
ableT and a biological threshold voltage is somewhat diffi- PlOtt€d as a function of for several values of. These data
cult. Some cortical neurons need to integrate many synaptig°W that ad is increasedy increases rapidly to values in
inputs in order to cross threshold. The ratio of the size of thd€ range of connectivities seen in real neural networks.
threshold to that of an average synaptic input defines the
realistic value ofT.

For higher threshold, the simulation time becomes im- A criticism of some neural network models is that they
practical. This is because the critical connectivity becomesely on linear summation of inpuf83]. This is in contrast to
much larger, andN has to grow accordingly to keep the some biological neurons, whose dendrites have been shown
connectivity dilute. Since the peak in the mutual informationto add synaptic inputs in highly nonlinear wayg#]. Synap-
follows the phase transition, we can use the annealed apic interaction can occur in both passive and active dendrites,
proximation to see how the location of the phase transitiorallowing neurons to implement a fuller range of Boolean
varies with threshold and connectivity. In the annealed apfunctions. To see how nonlinear summation affects the re-

g/here erfc( - -) is the complementary error function. De-

4. Nonlinear summation
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HAAML AL R R A MR A We demonstrated the robustness of this result by extend-
1000 - o & x ing the model to incorporate the biologically relevant cases
® X of nonzero threshold and nonlinear summation. We showed
e X that, while the location of the transition changes with the
o e X ] threshold, mutual information always peaks near the transi-
. 600+ S o8& tion. For larger thresholds, the annealed approximation pre-
4 S & dicts thatK . increases rapidly to values that are closer to the
400 L o e X i connectivities observed in biology. We also showed that the
o @ X
o e x results carry over to the random Boolean network—the ex-
treme case of nonlinear summation.
200 o ex . While the present model includes such physiological fea-
- oex 7 tures as nonzero thresholds and dilute, asymmetric connec-
Ol bovnliinl il bl tions, it is clearly still quite removed from biological reality.
0 4 8 12 16 20 24 The two-state neuron is a coarse graining of the average
T firing rate, which is itself an approximation of the neural
spike train. However, spiking neurons are also binary on a
different time scale, and the model could easily be adjusted
to account for this with the introduction of a second time

sults of this paper, we measure the average mutual inform@calé—one for the refractory period and one for the time
tion in random Boolean networks, the extreme case of non@V€r Which a neuron integrates inputs. In fact, the present
linear summation. Figure 9 shows the mutual information agnodel can represent a spiking network for the special case
a function of connectivity for a Boolean network. The peakWhere the integration time is equal to the refractory period.
near the transition is clearly present. It is sharper and talle}? this case,o=1 would represent a spike within a small
than for the neural network with linear summation. Mutualtime bin on the scale of the refractory period ane-0
information provides a method for quantifying the computa-WOUld represent the absence of a spike. Such a change would

tional benefit of various degrees of nonlinear summation. P€ unlikely to eliminate the phase transition or the peak in
mutual information. It would increase the average mutual

information, though, because some additional information
could be transmitted in the individual spike timing. A spik-
In this paper, we use the concept of mutual information toing model would require a source of noise which would
investigate the relationship between a network’s dynamicsnake the model nondeterministic. In the present model,
and its ability to perform computations. To determine thenoise in the spike train is time averaged to produce the bi-
location of the order-chaos transition, we examined the denary state.
pendence of the average period on system size and applied The model also lacks spatial dimensionality since a con-
the annealed approximation to determine the time evolutiomection between any two neurons is equally probable. How-
of the distance between nearby trajectories. We showed hoever, it has already been shown that the phase transition also
the average information per cell and the average mutual ineccurs in two- and three-dimensional RBNs. Thus, it is likely
formation per connection vary with the number of inputs.that the results of this paper will carry over as well. In a
We found that, althouglH) increases in the chaotic phase, three-dimensional network, different patterns of connectivity

(Iy reaches a maximum near the transition. could be examined.
These simplifications are reflected in the somewhat low

800 -

FIG. 8. The critical connectivitK, as a function of threshold
according to Eq(13): O, p=0.1; «, p=0.2; X, p=0.3.

Ill. DISCUSSION

—r 1 T 1 T T 1 level of mutual information and the small number of inputs
0.15F . } for which the transiti H It t
or which the transition occurs. However, our results sugges
| 1 that there is a direct relation between the dynamics of the
system and the peak in mutual information. Generally,
0.10 i changes in the details of the underlying system will alter the
i) location of the phase transition and the height of the mutual
= | i information peak, but will not eliminate them. The key com-
T/> . ponent appears to be the transition from isolated clusters of
0.05 - 4 activity to the percolation of activity throughout the network.
Future work will incorporate more of the physiological fea-
5 ° ° i tures mentioned above, bringing the model even closer to
° biology and allowing comparison with experimental data.
0.00 & 1 1 1 1 1 ? e
01 2 3 45 6 7 8 9
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APPENDIX A: (0,1) NEURONS VERSUS(—-1,+1) olds in the other. The inequivalence of the two representa-
NEURONS tions has been pointed out previousfgr example[1,36]).

The choice of representation depends on which aspects of
neural networks are the primary focus of study. Neural net- ~ APPENDIX B: DERIVATION OF THE AVERAGE
work pioneers such as McCulloch and Pitts used) neu- ACTIVITY

rons to study the network as a logical device analogous t0 a The gistribution of activitied (p) is a complicated func-
digital computer|35]. Later workers, such as Hopfield3]  jon for which no analytic solution is known. Followid§7],

and Amitet al.[14], used -1,+1) neurons to take advan- it can pe expressed as the solution to the integral equation
tage of the similarity of their models to spin-glass systems

and analyze them with the tools of statistical mechanics. In
this paper, we choos€,1) neurons because we are inter- f(p):f dwi1p(Wig) - - - dWig p(Wik)
ested in studying physiologically realistic neurons and the

influence of the neuronal threshold on network dynamics. In

the case of £1,+1) neurons, an inhibitory connection X | dpaf(p1)---dpkf(pk)

(w;;<0) coming from an inactive neurors(=—1) acts as

an excitation. Similarly, an excitatory connection from an

. : . ’ Jo . X ol p— P S P
inactive neuron is the same as an inhibition. This leads to P gzo,l (71lpy) U;::o,l (oclpy)

dynamics that are difficult to reconcile with physiological
networks. For example, a neuron with all of its inputs inac- )
tive would have a 50% chance of being active at the next

time step. A real neuron would be inactive in such a situa-

tion. It is only in the(0,1) representation that the synaptic Using Eq.(B1) the average activity can written as
inputs maintain their excitatory and inhibitory character.
Only with this invariance can the update function represent a
sum of voltages.

At first glance, the two representations may seem math-
ematically equivalent. Although switching representations Xf dp,f(py)- - -dpkf(py)
amounts to a simple change of variables it is easy to show
that this change of variables will change the distribution of
thresholds in potentially important ways. If we make the X 8
change of variablesS;=20;—1, so thatSe{—-1,1}, the
update function

. (B1)

; Wija-j

P:f dp’p’f dwi1p(Wip) - - - dwig p(Wik)

p'— X Ploylp)--- > P(oklpk)
1 og=0,1

01=0,

X O . (B2)

3 v

O'i(t‘f'l):@[z W”(Tl(t)_TJ (Al) . .
J Integratlng ovelp' gives:

becomes pzf dw;1p(W;jq) - - - dwig p(Wik)

a(t+1)=sgr[; wijsj(t)+; wi;—2T;|. (A2 deplf(pl)__.def(pK)

The transformation generates an extra thresholdlike term, x> P(o4|py)--- > p(gK|pK)@(2 W”.Uj)_
2;w;;, which is the sum oveK random variables chosen 01=01 k=01 ]

from the distributiono(w;;). Let p(w;;) have a mean ofv, (B3)
and a variance ob. For a highly connected network<(

>1), the central limit theorem is applicable, and the termintegrating over the weights gives the following for any dis-
Zjw;; is a random variable from a Gaussian distribution withtribution of weightsp(w;;) that is symmetric about zero:

a mean ofKXw, and a variance oK x a2 If p(w;;) is

symmetric, thenw,=0, and thus the average value of the

extra term is zero. But, since the variance is large, the extra B
threshold term can be very large. For a weakly connected p= | dpaf(py)---dpf(pPk)
(dilute) network such as the one described in this paper, the
extra term is the sum of a small number of random variables.
; . X X p e p
In general, this term is nonzero and different for each neuron. 0120 1 (@1lPy) 20 1 (P

There is no possible distributiop(w;;) that will make the
extra term always zero. Essentially, zero threshold in one Xl(l—é 5. 0 (B4)
representation corresponds to a broad distribution of thresh- 2 71,0 K0
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Evaluating the sums over all input states: 0.06 —Tr+T1T T+ T T T T
- :.'. -
L 1[f dp,f 1 - B5
P=5~"5| | dpf(P1)(1=py) (BS) 0.04
)
1-(1-p* 5,
T E— (B6) 4
0.02
APPENDIX C: FINITE-SIZE EFFECTS
In studying this system, significant finite-size effects were
encountered. Such effects are common in percolation prob- 0.00ecd et v 1111y

lems (see[38]) and are expected to be larger in this system 2 4 6 8 10 12 14 16

since there is variation in the percolation parameter for a K

given value ofK. One finite-size effect occurs in the mea- g 10, Average mutual information per connectid versus
surement of the average activity of a network in the ordereg for various system sizes from computer simulations: dotted line,
phase. This quantity is zero in the lint—c> but is nonzero  N=200; dashed lind\=800; thin solid lineN=2000; thick solid

for finite N because of small localized periodic attractors thatine, N=50 000.

can exist. FolkK=2, in the range oN=40 to N=20000,

1‘;)‘?‘1’8,\1@83 activitp goes to zero as power law N: p(K The origin of both of these finite-size effects can be un-

A more important finite-size effect is that which alters the derstood by looking at the distribution of activities for vari-

location of the peak in the mutual information. The average®US System sizes. At smaller valuesNyfthere are peaks at
mutual information(1) is plotted versuk for several values multiples of the reciprocals of small integers, (5, 3, 7, 3,

of N in Fig. 10. ForN=80, the peak is ak=3, the lowest etc), which result from local attractors with short periods.
value ofK in the chaotic phase. Al increases, this peak These attractors are due to small feedback loops that occur in
decreases and a new peak appeat§=ab. By N=50000, smaller networks but become increasingly rardNas~. In

the curve appears to reach a limiting form. Examination ofmodels that are three dimensional and have local connec-
Fig. 10 reveals that the finite-size effect displayed here is nofions, these types of attractors may play a more important
a gradual shift in peak location with increasiig Rather,

role since they would be likely to occur in networks of all

there are two peaks—one l&t=3 that decreases and one at gjzeg.

K=5 that increases slightly.
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